本文是中国大学慕课《机器学习》的“集成学习”章节的课后代码。
课程地址:
https://www.icourse163.org/course/WZU-1464096179
【资料图】
课程完整代码:
https://github.com/fengdu78/WZU-machine-learning-course
代码修改并注释:黄海广,haiguang2000@wzu.edu.cn
importwarningswarnings.filterwarnings("ignore")importpandasaspdfromsklearn.model_selectionimporttrain_test_split生成数据
生成12000行的数据,训练集和测试集按照3:1划分
fromsklearn.datasetsimportmake_hastie_10_2data,target=make_hastie_10_2()
X_train,X_test,y_train,y_test=train_test_split(data,target,random_state=123)X_train.shape,X_test.shape
((9000, 10), (3000, 10))模型对比
对比六大模型,都使用默认参数
fromsklearn.linear_modelimportLogisticRegressionfromsklearn.ensembleimportRandomForestClassifierfromsklearn.ensembleimportAdaBoostClassifierfromsklearn.ensembleimportGradientBoostingClassifierfromxgboostimportXGBClassifierfromlightgbmimportLGBMClassifierfromsklearn.model_selectionimportcross_val_scoreimporttimeclf1=LogisticRegression()clf2=RandomForestClassifier()clf3=AdaBoostClassifier()clf4=GradientBoostingClassifier()clf5=XGBClassifier()clf6=LGBMClassifier()forclf,labelinzip([clf1,clf2,clf3,clf4,clf5,clf6],["LogisticRegression","RandomForest","AdaBoost","GBDT","XGBoost","LightGBM"]):start=time.time()scores=cross_val_score(clf,X_train,y_train,scoring="accuracy",cv=5)end=time.time()running_time=end-startprint("Accuracy:%0.8f (+/-%0.2f),耗时%0.2f秒。模型名称[%s]"%(scores.mean(),scores.std(),running_time,label))
Accuracy: 0.47488889 (+/- 0.00),耗时0.04秒。模型名称[Logistic Regression]Accuracy: 0.88966667 (+/- 0.01),耗时16.34秒。模型名称[Random Forest]Accuracy: 0.88311111 (+/- 0.00),耗时3.39秒。模型名称[AdaBoost]Accuracy: 0.91388889 (+/- 0.01),耗时13.14秒。模型名称[GBDT]Accuracy: 0.92977778 (+/- 0.00),耗时3.60秒。模型名称[XGBoost]Accuracy: 0.93188889 (+/- 0.01),耗时0.58秒。模型名称[LightGBM]
对比了六大模型,可以看出,逻辑回归速度最快,但准确率最低。而LightGBM,速度快,而且准确率最高,所以,现在处理结构化数据的时候,大部分都是用LightGBM算法。
XGBoost的使用 1.原生XGBoost的使用importxgboostasxgb#记录程序运行时间importtimestart_time=time.time()#xgb矩阵赋值xgb_train=xgb.DMatrix(X_train,y_train)xgb_test=xgb.DMatrix(X_test,label=y_test)##参数params={"booster":"gbtree",#"silent":1,#设置成1则没有运行信息输出,最好是设置为0.#"nthread":7,#cpu线程数默认最大"eta":0.007,#如同学习率"min_child_weight":3,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。"max_depth":6,#构建树的深度,越大越容易过拟合"gamma":0.1,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。"subsample":0.7,#随机采样训练样本"colsample_bytree":0.7,#生成树时进行的列采样"lambda":2,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#"alpha":0,#L1正则项参数#"scale_pos_weight":1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。#"objective":"multi:softmax",#多分类的问题#"num_class":10,#类别数,多分类与multisoftmax并用"seed":1000,#随机种子#"eval_metric":"auc"}plst=list(params.items())num_rounds=500#迭代次数watchlist=[(xgb_train,"train"),(xgb_test,"val")]
#训练模型并保存#early_stopping_rounds当设置的迭代次数较大时,early_stopping_rounds可在一定的迭代次数内准确率没有提升就停止训练model=xgb.train(plst,xgb_train,num_rounds,watchlist,early_stopping_rounds=100,)#model.save_model("./model/xgb.model")#用于存储训练出的模型print("bestbest_ntree_limit",model.best_ntree_limit)y_pred=model.predict(xgb_test,ntree_limit=model.best_ntree_limit)print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))#输出运行时长cost_time=time.time()-start_timeprint("xgboostsuccess!","\n","costtime:",cost_time,"(s)......")
[0]train-rmse:1.11000val-rmse:1.10422[1]train-rmse:1.10734val-rmse:1.10182[2]train-rmse:1.10465val-rmse:1.09932[3]train-rmse:1.10207val-rmse:1.09694
……
[497]train-rmse:0.62135val-rmse:0.68680[498]train-rmse:0.62096val-rmse:0.68650[499]train-rmse:0.62056val-rmse:0.68624best best_ntree_limit 500error=0.826667xgboost success! cost time: 3.5742645263671875 (s)......2.使用scikit-learn接口
会改变的函数名是:
eta -> learning_rate
lambda -> reg_lambda
alpha -> reg_alpha
fromsklearn.model_selectionimporttrain_test_splitfromsklearnimportmetricsfromxgboostimportXGBClassifierclf=XGBClassifier(# silent=0, #设置成1则没有运行信息输出,最好是设置为0.是否在运行升级时打印消息。#nthread=4,#cpu线程数默认最大learning_rate=0.3,#如同学习率min_child_weight=1,#这个参数默认是1,是每个叶子里面h的和至少是多少,对正负样本不均衡时的0-1分类而言#,假设 h 在0.01 附近,min_child_weight 为 1 意味着叶子节点中最少需要包含 100个样本。#这个参数非常影响结果,控制叶子节点中二阶导的和的最小值,该参数值越小,越容易 overfitting。max_depth=6,#构建树的深度,越大越容易过拟合gamma=0,#树的叶子节点上作进一步分区所需的最小损失减少,越大越保守,一般0.1、0.2这样子。subsample=1,#随机采样训练样本训练实例的子采样比max_delta_step=0,#最大增量步长,我们允许每个树的权重估计。colsample_bytree=1,#生成树时进行的列采样reg_lambda=1,#控制模型复杂度的权重值的L2正则化项参数,参数越大,模型越不容易过拟合。#reg_alpha=0,#L1正则项参数#scale_pos_weight=1, #如果取值大于0的话,在类别样本不平衡的情况下有助于快速收敛。平衡正负权重#objective="multi:softmax",#多分类的问题指定学习任务和相应的学习目标#num_class=10,#类别数,多分类与multisoftmax并用n_estimators=100,#树的个数seed=1000#随机种子#eval_metric="auc")clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))
Accuracy : 0.936LIghtGBM的使用 1.原生接口
importlightgbmaslgbfromsklearn.metricsimportmean_squared_error#加载你的数据#print("Loaddata...")#df_train=pd.read_csv("../regression/regression.train",header=None,sep="\t")#df_test=pd.read_csv("../regression/regression.test",header=None,sep="\t")##y_train=df_train[0].values#y_test=df_test[0].values#X_train=df_train.drop(0,axis=1).values#X_test=df_test.drop(0,axis=1).values#创建成lgb特征的数据集格式lgb_train=lgb.Dataset(X_train,y_train)#将数据保存到LightGBM二进制文件将使加载更快lgb_eval=lgb.Dataset(X_test,y_test,reference=lgb_train)#创建验证数据#将参数写成字典下形式params={"task":"train","boosting_type":"gbdt",#设置提升类型"objective":"regression",#目标函数"metric":{"l2","auc"},#评估函数"num_leaves":31,#叶子节点数"learning_rate":0.05,#学习速率"feature_fraction":0.9,#建树的特征选择比例"bagging_fraction":0.8,#建树的样本采样比例"bagging_freq":5,#k意味着每k次迭代执行bagging"verbose":1#<0显示致命的,=0显示错误(警告),>0显示信息}print("Starttraining...")#训练cvandtraingbm=lgb.train(params,lgb_train,num_boost_round=500,valid_sets=lgb_eval,early_stopping_rounds=5)#训练数据需要参数列表和数据集print("Savemodel...")gbm.save_model("model.txt")#训练后保存模型到文件print("Startpredicting...")#预测数据集y_pred=gbm.predict(X_test,num_iteration=gbm.best_iteration)#如果在训练期间启用了早期停止,可以通过best_iteration方式从最佳迭代中获得预测#评估模型print("error=%f"%(sum(1foriinrange(len(y_pred))ifint(y_pred[i]>0.5)!=y_test[i])/float(len(y_pred))))
Start training...[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000448 seconds.You can set `force_col_wise=true` to remove the overhead.[LightGBM] [Info] Total Bins 2550[LightGBM] [Info] Number of data points in the train set: 9000, number of used features: 10[LightGBM] [Info] Start training from score 0.012000[1]valid_0"s auc: 0.814399valid_0"s l2: 0.965563Training until validation scores don"t improve for 5 rounds[2]valid_0"s auc: 0.84729valid_0"s l2: 0.934647[3]valid_0"s auc: 0.872805valid_0"s l2: 0.905265[4]valid_0"s auc: 0.884117valid_0"s l2: 0.877875[5]valid_0"s auc: 0.895115valid_0"s l2: 0.852189
……
[191]valid_0"s auc: 0.982783valid_0"s l2: 0.319851[192]valid_0"s auc: 0.982751valid_0"s l2: 0.319971[193]valid_0"s auc: 0.982685valid_0"s l2: 0.320043Early stopping, best iteration is:[188]valid_0"s auc: 0.982794valid_0"s l2: 0.319746Save model...Start predicting...error=0.6640002.scikit-learn接口
fromsklearnimportmetricsfromlightgbmimportLGBMClassifierclf=LGBMClassifier(boosting_type="gbdt",#提升树的类型gbdt,dart,goss,rfnum_leaves=31,#树的最大叶子数,对比xgboost一般为2^(max_depth)max_depth=-1,#最大树的深度learning_rate=0.1,#学习率n_estimators=100,#拟合的树的棵树,相当于训练轮数subsample_for_bin=200000,objective=None,class_weight=None,min_split_gain=0.0,#最小分割增益min_child_weight=0.001,#分支结点的最小权重min_child_samples=20,subsample=1.0,#训练样本采样率行subsample_freq=0,#子样本频率colsample_bytree=1.0,#训练特征采样率列reg_alpha=0.0,#L1正则化系数reg_lambda=0.0,#L2正则化系数random_state=None,n_jobs=-1,silent=True,)clf.fit(X_train,y_train,eval_metric="auc")#设置验证集合verbose=False不打印过程clf.fit(X_train,y_train)y_true,y_pred=y_test,clf.predict(X_test)print("Accuracy:%.4g"%metrics.accuracy_score(y_true,y_pred))
Accuracy : 0.927参考
1.https://xgboost.readthedocs.io/
2.https://lightgbm.readthedocs.io/
3.https://blog.csdn.net/q383700092/article/details/53763328?locationNum=9&fps=1
往期精彩回顾适合初学者入门人工智能的路线及资料下载(图文+视频)机器学习入门系列下载机器学习及深度学习笔记等资料打印《统计学习方法》的代码复现专辑机器学习交流qq群955171419,加入微信群请扫码
关键词:
(责任编辑:黄俊飞)推荐内容
- 执教两个多月力助高芙首进美网决赛,郑钦
- CPI同比由降转涨 8月份上涨0.1%
- “亚运文旅之约”推出12条主题漫游长廊
- “灯塔工厂”点亮“未来制造”
- 华晟经世与NVIDIA正式成为合作伙伴
- 魔兽世界中的频道修改权限怎么改 魔兽世
- 完美充值会员能不能跳过新手(完美充值)
- 西部牧业:公司没有涉足水产养殖饲料
- 润贝航科:拟1.8亿元投建先进航空复合材
- 高股息率+稳健成长股曝光!5股PE不足10倍
- “金融16条”发布以来 哪些银行在积极增
- 天原股份董秘回复:磷酸铁锂正极材料认证
- 可穿戴设备也能“可支付”了?「支付芯」
- “曹氏鸭脖”企业号自曝使用大量添加剂?
- 河北义务教育阶段适龄残疾儿童少年入学率
- A股异动 | 冠石科技三连板 “华为含量
- 北京地铁APP9月1日升级,新增这些功能
- 中国8月财新制造业PMI 51
- 天禄辟邪百解(天禄辟邪)
- 8月份经济景气水平总体稳定
- 《最后的真相》成都路演:闫妮称黄晓明有
- 北京 演唱会 2021_sj北京演唱会
- 美军仓皇撤离阿富汗两周年丨美专家:战争
- 纳税人为工商户店名的,购房须提供营业执
- 谷歌Chrome浏览器带来新品!允许用户将密
- 长沙市第四医院:开展就医体验调研 让患
- 璞泰来上半年营收增13%净利降6.6% 股价涨1.61%
- 中报速递|时代中国上半年营收约99亿元
- 备孕需要吃什么维生素(备孕需要吃什么)
- 装甲核心6辅助装备推进器怎么获得 装甲
- 抖音推出“开学公开课”系列知识直播,10
- 争做社区共建小主人
- 河源市源城区新韵物业管理100%股权被挂牌
- 梦东方(00593.HK):延迟刊发2023年中期业绩
- 开个文具店大概要多少钱(开个文具店需要
- 张家界严查“摩电”交通违法 优化“创文
- 迪迩秀 | 金砖合作:强化南南关系与推
- 合肥百货:控股股东建投集团自愿承诺不减
- 中山街道超多公益课程来啦!大人、孩子都
- 涡阳县楚店镇:老有所学 快乐无限
- 学习语丨把铸牢中华民族共同体意识工作抓
- 凤竹纺织(600493)每日收评(08-30)
- 搭载“候鸟团”的车子趴窝在高速,幸亏他
- 华为Mate 60回归!红魔发海报欢迎 网友
- 机械键盘怎么打大写_机械键盘怎么打数字
- 青海有机枸杞产品远销世界30多个国家和地
- 深夜刷屏!苹果宣布大消息,英伟达又爆了
- 超200亿!票房成绩刷新暑期档影史纪录
- 海军某支队着力提升政治干部军事素质融入
- 肺部“大救星”找到了,不是莲藕!抓紧吃
- 滨江集团2023年8月29日晚间披露2023年半
- 香港恒生指数收涨1.95% 恒生科技指数涨2.59%
- 1-0,第42分钟,瓦伦西亚禁区内犯规,裁
- 新疆阿克苏地区库车市发生3.7级地震 震
- 风力太大 日本探月发射再次受挫
- 生益科技:覆铜板价格仍有压力
- 全民反诈齐行动 给财产加个“金钟罩”
- 穆迪料仁恒置地信用指标和流动性缓冲将在
- 谁花5555元买早餐了老板正找你!老板:百
- 天能动力(00819)发布中期业绩,股东应占
- 《最后的真相》成都路演:闫妮称黄晓明有
- 北京 演唱会 2021_sj北京演唱会
- 美军仓皇撤离阿富汗两周年丨美专家:战争
- 纳税人为工商户店名的,购房须提供营业执
- 谷歌Chrome浏览器带来新品!允许用户将密
- 长沙市第四医院:开展就医体验调研 让患
- 璞泰来上半年营收增13%净利降6.6% 股价涨1.61%
- 中报速递|时代中国上半年营收约99亿元
- 备孕需要吃什么维生素(备孕需要吃什么)
- 装甲核心6辅助装备推进器怎么获得 装甲
- 抖音推出“开学公开课”系列知识直播,10
- 争做社区共建小主人
- 河源市源城区新韵物业管理100%股权被挂牌
- 梦东方(00593.HK):延迟刊发2023年中期业绩
- 开个文具店大概要多少钱(开个文具店需要
- 张家界严查“摩电”交通违法 优化“创文
- 迪迩秀 | 金砖合作:强化南南关系与推
- 合肥百货:控股股东建投集团自愿承诺不减
- 中山街道超多公益课程来啦!大人、孩子都
- 涡阳县楚店镇:老有所学 快乐无限
- 学习语丨把铸牢中华民族共同体意识工作抓
- 凤竹纺织(600493)每日收评(08-30)
- 搭载“候鸟团”的车子趴窝在高速,幸亏他
- 华为Mate 60回归!红魔发海报欢迎 网友
- 机械键盘怎么打大写_机械键盘怎么打数字
- 青海有机枸杞产品远销世界30多个国家和地
- 深夜刷屏!苹果宣布大消息,英伟达又爆了
- 超200亿!票房成绩刷新暑期档影史纪录
- 海军某支队着力提升政治干部军事素质融入
- 肺部“大救星”找到了,不是莲藕!抓紧吃
- 滨江集团2023年8月29日晚间披露2023年半
- 香港恒生指数收涨1.95% 恒生科技指数涨2.59%
- 1-0,第42分钟,瓦伦西亚禁区内犯规,裁
- 新疆阿克苏地区库车市发生3.7级地震 震
- 风力太大 日本探月发射再次受挫
- 生益科技:覆铜板价格仍有压力
- 全民反诈齐行动 给财产加个“金钟罩”
- 穆迪料仁恒置地信用指标和流动性缓冲将在
- 谁花5555元买早餐了老板正找你!老板:百
- 天能动力(00819)发布中期业绩,股东应占
- 吉林省通化市2023-08-28 20:06发布山洪
- 伟禄集团(01196)发布中期业绩,股东应占
- 成都国际车展 兰博基尼中国总经理专访
- 两部门:自2023年8月28日起 证券交易印
- 适合宿舍用的高品质快充插座推荐
- Vlog|东北亚博览会中的衣食住行
- 粤东雷高速完成全线架梁施工 计划年底通车
- 郑州将打造“四新”一流国资国企
- 未成年充值手游万元,家长申诉退款通过后
- 余承东:新款问界M7预售价25.8万起 9月1
- 志愿者们,准备好了
- 证监会:将投资者融资买入证券时的融资保
- 一架美国军机在澳大利亚坠毁 3名美军人
- 大巴起火致车上7岁女孩烧伤,医院:伤情
- 相亲相爱一家人歌词完整版分别是谁唱的?_
- 《装甲核心6》Steam在线峰值破15万!位列
- 日本排污入海后:水产供应端格局生变 淡
- 【德州电锯杀人狂】新手向入坑简易指南&
- 郭艾伦:这时候最着急的就是李凯尔自己了
- 河南省委组织部发布4名同志拟任职公示